skip to main content


Search for: All records

Creators/Authors contains: "Jourdan, Olivier"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract. Ice crystal submicron structures have a large impact on the opticalproperties of cirrus clouds and consequently on their radiative effect.Although there is growing evidence that atmospheric ice crystals are rarelypristine, direct in situ observations of the degree of ice crystal complexityare largely missing. Here we show a comprehensive in situ data set of icecrystal complexity coupled with measurements of the cloud angular scatteringfunctions collected during a number of observational airborne campaigns atdiverse geographical locations. Our results demonstrate that an overwhelmingfraction (between 61 % and 81 %) of atmospheric ice crystals sampledin the different regions contain mesoscopic deformations and, as aconsequence, a similar flat and featureless angular scattering function isobserved. A comparison between the measurements and a database of opticalparticle properties showed that severely roughened hexagonal aggregatesoptimally represent the measurements in the observed angular range. Based onthis optical model, a new parameterization of the cloud bulk asymmetry factorwas introduced and its effects were tested in a global climate model. Themodelling results suggest that, due to ice crystal complexity, ice-containingclouds can induce an additional short-wave cooling effect of−1.12 W m2 on the top-of-the-atmosphere radiative budget that hasnot yet been considered. 
    more » « less
  2. With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore cross-cutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic. 
    more » « less